Probability Distributions

Francisco Luquero Epicentre

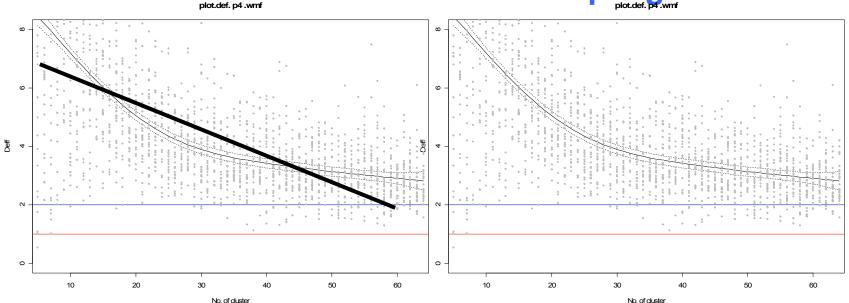
Madrid, June 2009

To understand the concept of probability distribution

To associate common probability distributions to certain types of variables

Parametric Vs. non parametric aproach

Parametric: decision making method where the distribution of the sampling statistic is known Non-Parametric: decision making method which does not require knowledge of the distribution of the sampling statistic



Parametric Vs. non parametric aproach

- Parametric: decision making method where the distribution of the sampling statistic is known
- Non-Parametric: decision making method which does not require knowledge of the distribution of the sampling statistic

Probability Mass Function

Let X be a discrete random variable with possible values x_0 , x_1 , x_2 , x_3 ,, x_k and the corresponding probabilities $p(x_0)$, $p(x_1)$, $p(x_2)$, $p(x_3)$,, $P(x_k)$.

Example: imagine X to be number of children with possible values 0, 1, 2, 3,10

For any i,

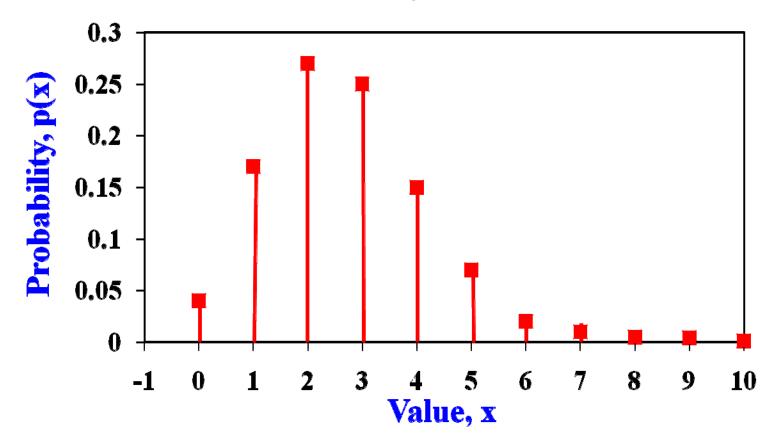
$$p(x_i) \ge 0$$
 and $\sum_{i=0}^{k} p(x_i) = 1$.

Then $p(x_i)$ is a probability mass function.

Let X be a discrete random variable and its corresponding probabilities are:

- p(0) = 0.04p(5) = 0.07p(1) = 0.18p(6) = 0.02p(2) = 0.27p(7) = 0.01p(3) = 0.25p(8) = 0.005p(4) = 0.15p(9) = 0.004
 - p(10) = 0.001

Probability Function



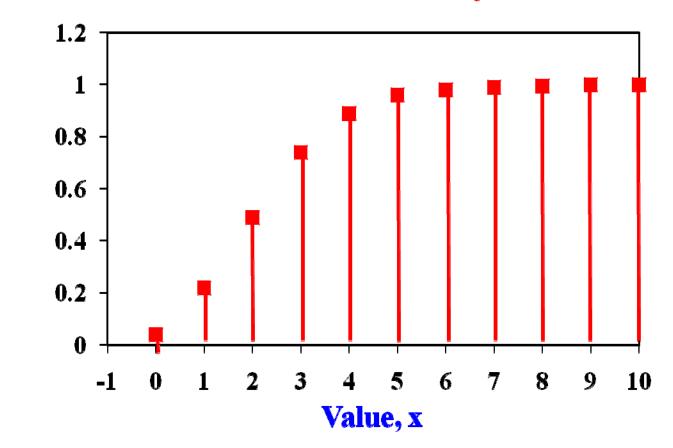
Cumulative probabilities are found by adding individual probabilities.

$$\Pr[\mathbf{X} \le \mathbf{x}] = \sum_{\mathbf{x}_i \le \mathbf{x}} p(\mathbf{x}_i)$$

 $Pr[X \le 3] = p(0) + p(1) + p(2) + p(3)$

X _i	$\mathbf{p}(\mathbf{x}_i)$	$\Pr[\mathbf{X} \leq \mathbf{x}_i]$
0	0.040	0.040
1	0.180	0.220
2	0.270	0.490
3	0.250	0.740
4	0.150	0.890
5	0.070	0.960
6	0.020	0.980
7	0.010	0.990
8	0.005	0.995
9	0.004	0.999
10	0.001	1.000

Cumulative Probability



Cumulative Probabili

Two important concepts

Expectation

Variance

Two important concepts

Expectation

Expectation of a Discrete Random Variable

The expected value is the mean of all possible results for an infinite number of trials.

The expected value of a random variable, X is denoted by E(X).

 $\mathbf{E}(\mathbf{X}) = \sum (\mathbf{x}_i) \mathbf{p}(\mathbf{x}_i)$ all x_i

Xi	$\mathbf{p}(\mathbf{x}_i)$	$\Pr[\mathbf{X} \leq \mathbf{x}_i]$
0	0.040	0.040
1	0.180	0.220
2	0.270	0.490
3	0.250	0.740
4	0.150	0.890
5	0.070	0.960
6	0.020	0.980
7	0.010	0.990
8	0.005	0.995
9	0.004	0.999
10	0.001	1.000

Expectation of a Discrete Random Variable

For the example of the discrete random variable, X

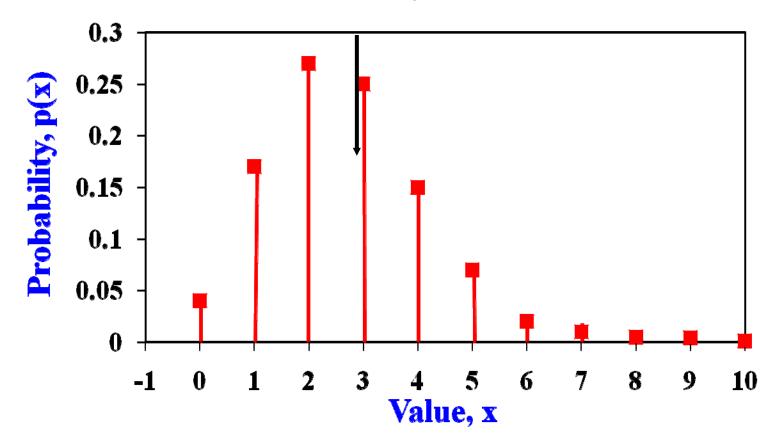
$$\begin{split} E(X) &= (0) \times p(0) + (1) \times p(1) + (2) \times p(2) \\ &+ (3) \times p(3) + (4) \times p(4) + (5) \times p(5) \\ &+ (6) \times p(6) + (7) \times p(7) + (8) \times p(8) \\ &+ (9) \times p(9) + (10) \times p(10) \end{split}$$

Expectation of a Discrete Random Variable

 $E(X) = (0) \times 0.04 + (1) \times 0.18 + (2) \times 0.27$ $+ (3) \times 0.25 + (4) \times 0.15 + (5) \times 0.07$ $+ (6) \times 0.02 + (7) \times 0.01 + (8) \times 0.005$ $+ (9) \times 0.004 + (10) \times 0.001$

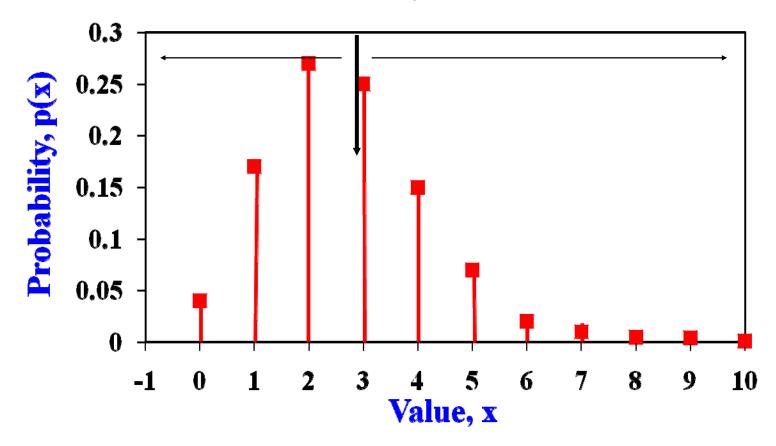
E(X) = 2.696

Probability Function

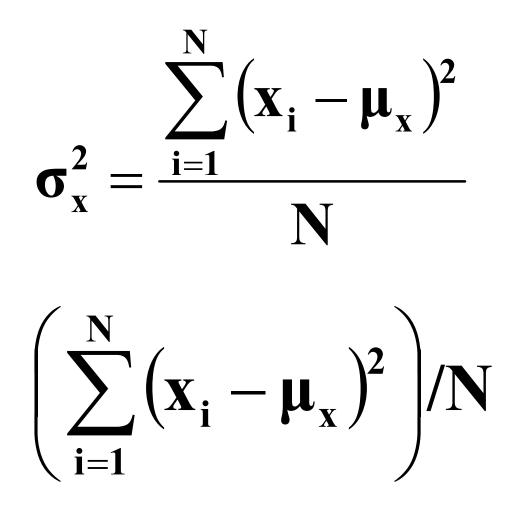


Two important concepts

Probability Function



Variance of a Discrete Random Variable



Variance of a Discrete Random Variable

$$\left(\sum_{i=1}^{N} \left(x_{i} - \mu_{x}\right)^{2}\right) / N$$

is the mean value of $(\mathbf{X}_{i} - \boldsymbol{\mu}_{x})^{2}$

 $\sigma_x^2 = E(X - \mu_x)^2$

Two important concepts

Expectation: more probable value

Variance: dispersion of the values

Three main distribution (regression)

Gaussian (normal): linear regression

Binomial: logistic regresion

Poisson: poisson regresion

Other Probability Distributions: Special Cases

Gaussian Distribution:

- The normal distribution or Gaussian distribution is a continuous probability distribution
- Describes data that clusters around a mean or average.
- The graph of the associated probability density function is bell-shaped, with a peak at the mean
- It is known as the Gaussian function or bell curve.
- The normal distribution can be used to describe, at least approximately, any variable that tends to cluster around the mean.

Why transform data?

- In some instances it can help us better examine a distribution
- Many statistical models are based on the mean and thus require that the mean is an appropriate measure of central tendency (*i.e.*, the distribution is approximately normal)
- Linear regression assumes that the relationship between two variables is linear. Often we can "straighten" a nonlinear relationship by transforming one or both of the variables
 - Often transformations will 'fix' problem distributions so that we can use least-squares regression
 - When transformations fail to remedy these problems, another option is to use nonparametric regression, which makes fewer assumptions about the data

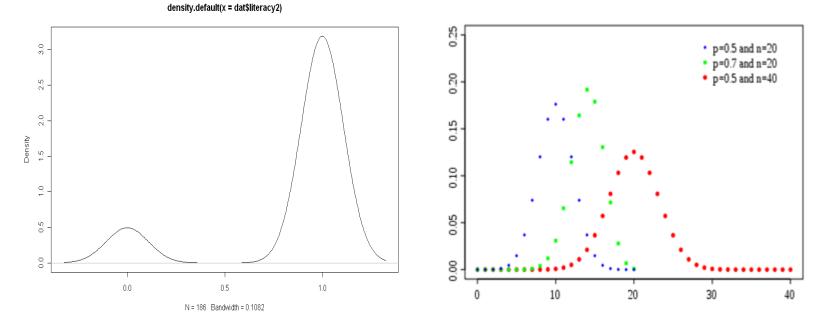
Power transformations for quantitative variables

- Although there are an infinite number of functions *f(x)* that can be used to transform a distribution in practice only a relatively small number are regularly used
- For quantitative variables one can usually rely on the "family" of powers and roots: x² or x^{0.5}
- When p is negative, the transformation is an inverse power:
- When *p* is a fraction, the transformation represents aroot:

Other Probability Distributions: Special Cases

Binomial Distribution:

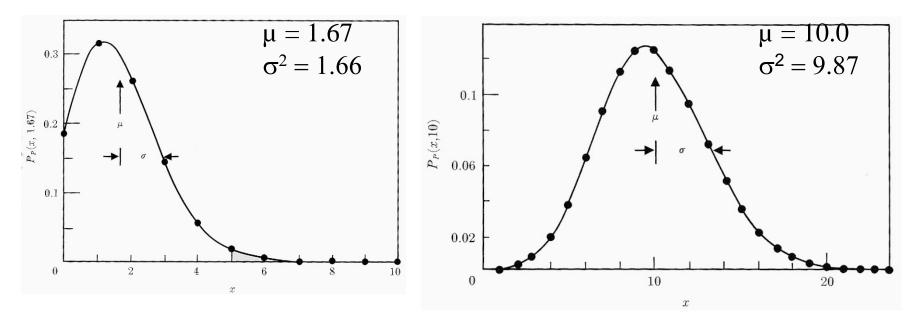
- The binomial distribution is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments
- Each of these success have probability p.
- Such a success/failure experiment is also called a Bernoulli experiment or Bernoulli trial.
- In fact, when n = 1, the binomial distribution is a Bernoulli



Other Probability Distributions: Special Cases

Poisson Distribution:

- The Poisson distribution' is a discrete probability distribution
- Expresses the probability of a number of events occurring in a fixed period of time
- The Poisson distribution can also be used for the number of events in other specified intervals such as distance, area or volume.
- It is an approximation to the binomial distribution for the special case when the average number of successes is very much smaller than the possible number
- The possible values are higher than 0
- The mean (λ) and the variance (λ) are the same



Variables vs Distributions

Type of Variable		Distribution
Qualitative	Dichotomous	Binomial
Quantitative	Continuous	Gaussian
Quantitative	Discrete	Poisson