Probability Distributions

Francisco Luquero Epicentre

Madrid, June 2009

Objectives

- To understand the concept of probability distribution
- To associate common probability distributions to certain types of variables

Parametric Vs. non parametric aproach

- Parametric: decision making method where the distribution of the sampling statistic is known
plot.def. p4.wmf

- Non-Parametric: decision making method which does not require knowledge of the distribution of the sampling statistic

Parametric Vs. non parametric aproach

- Parametric: decision making method where the distribution of the sampling statistic is known
- Non-Parametric: decision making method which does not require knowledge of the distribution of the sampling statistic

Probability Mass Function

Let X be a discrete random variable with possible values $x_{0}, x_{1}, x_{2}, x_{3}, \ldots \ldots x_{k}$ and the corresponding probabilities $p\left(x_{0}\right)$, $p\left(x_{1}\right), p\left(x_{2}\right), p\left(x_{3}\right), \ldots \ldots . P\left(x_{k}\right)$.

Example: imagine X to be number of children with possible values $0,1,2,3$, 10

For any i ,
$p\left(x_{i}\right) \geq 0$ and $\sum_{i=0}^{k} p\left(x_{i}\right)=1$.

Then $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)$ is a probability mass function.

Let X be a discrete random variable and its corresponding probabilities are:

$$
\begin{array}{ll}
p(0)=0.04 & p(5)=0.07 \\
p(1)=0.18 & p(6)=0.02 \\
p(2)=0.27 & p(7)=0.01 \\
p(3)=0.25 & p(8)=0.005 \\
p(4)=0.15 & p(9)=0.004 \\
& p(10)=0.001
\end{array}
$$

Probability Function

Cumulative probabilities are found by adding individual probabilities.

$$
\operatorname{Pr}[\mathbf{X} \leq \mathbf{x}]=\sum_{\mathbf{x}_{\mathbf{i}} \leq \mathbf{x}} \mathbf{p}\left(\mathbf{x}_{\mathbf{i}}\right)
$$

$\operatorname{Pr}[\mathbf{X} \leq \mathbf{3}]=\mathbf{p}(\mathbf{0})+\mathbf{p}(\mathbf{1})+\mathbf{p}(\mathbf{2})+\mathbf{p}(\mathbf{3})$

$\mathbf{X}_{\mathbf{i}}$	$\mathbf{p}\left(\mathbf{X}_{\mathbf{i}}\right)$	$\operatorname{Pr}\left[\mathbf{X} \leq \mathbf{x}_{\mathbf{i}}\right]$
0	0.040	0.040
1	0.180	0.220
2	0.270	0.490
3	0.250	0.740
4	0.150	0.890
5	0.070	0.960
6	0.020	0.980
7	0.010	0.990
8	0.005	0.995
9	0.004	0.999
10	0.001	1.000

Cumulative Probability

Two important concepts

- Expectation

EVariance

Two important concepts

- Expectation

EVariance

Expectation of a Discrete Random Variable

The expected value is the mean of all possible results for an infinite number of trials.

The expected value of a random variable, X is denoted by $\mathbf{E}(\mathbf{X})$.

$$
\mathbf{E}(\mathbf{X})=\sum_{\text {all } \mathbf{x}_{\mathrm{i}}}\left(\mathbf{x}_{\mathbf{i}}\right) \mathbf{p}\left(\mathbf{x}_{\mathbf{i}}\right)
$$

$\mathbf{X}_{\mathbf{i}}$	$\mathbf{p}\left(\mathbf{X}_{\mathbf{i}}\right)$	$\operatorname{Pr}\left[\mathbf{X} \leq \mathbf{x}_{\mathbf{i}}\right]$
0	0.040	0.040
1	0.180	0.220
2	0.270	0.490
3	0.250	0.740
4	0.150	0.890
5	0.070	0.960
6	0.020	0.980
7	0.010	0.990
8	0.005	0.995
9	0.004	0.999
10	0.001	1.000

Expectation of a Discrete Random Variable

For the example of the discrete random variable, X

$$
\begin{aligned}
\mathbf{E}(\mathbf{X}) & =(\mathbf{0}) \times p(\mathbf{0})+(\mathbf{1}) \times p(\mathbf{1})+(\mathbf{2}) \times p(\mathbf{2}) \\
& +(\mathbf{3}) \times p(\mathbf{3})+(\mathbf{4}) \times \mathbf{p}(\mathbf{4})+(\mathbf{5}) \times p(\mathbf{5}) \\
& +(\mathbf{6}) \times p(\mathbf{6})+(\mathbf{7}) \times p(\mathbf{7})+(\mathbf{8}) \times p(\mathbf{8}) \\
& +(\mathbf{9}) \times p(\mathbf{9})+(\mathbf{1 0}) \times p(\mathbf{1 0})
\end{aligned}
$$

Expectation of a Discrete Random Variable

$$
\begin{aligned}
& \mathbf{E}(\mathbf{X})=(\mathbf{0}) \times \mathbf{0 . 0 4}+(\mathbf{1}) \times \mathbf{0 . 1 8}+(\mathbf{2}) \times \mathbf{0 . 2 7} \\
&+(\mathbf{3}) \times \mathbf{0 . 2 5}+(\mathbf{4}) \times \mathbf{0 . 1 5}+(\mathbf{5}) \times \mathbf{0 . 0 7} \\
&+(\mathbf{6}) \times \mathbf{0 . 0 2}+(\mathbf{7}) \times \mathbf{0 . 0 1}+(\mathbf{8}) \times \mathbf{0 . 0 0 5} \\
&+(\mathbf{9}) \times \mathbf{0 . 0 0 4}+(\mathbf{1 0}) \times \mathbf{0 . 0 0 1} \\
& \mathbf{E}(\mathbf{X})=2.696
\end{aligned}
$$

Probability Function

Two important concepts

Expectation

- Variance

Probability Function

Variance of a Discrete Random Variable

$$
\begin{aligned}
& \boldsymbol{\sigma}_{x}^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)^{2}}{N} \\
& \left(\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)^{2}\right) / \mathbf{N}
\end{aligned}
$$

Variance of a Discrete Random Variable

$\left(\sum_{i=1}^{N}\left(x_{i}-\boldsymbol{\mu}_{x}\right)^{2}\right) / \mathbf{N}$
is the mean value of $\left(\mathbf{x}_{\mathbf{i}}-\boldsymbol{\mu}_{\mathbf{x}}\right)^{\mathbf{2}}$

$$
\boldsymbol{\sigma}_{\mathbf{x}}^{2}=\mathbf{E}\left(\mathbf{X}-\boldsymbol{\mu}_{\mathrm{x}}\right)^{2}
$$

Two important concepts

Expectation: more probable value

- Variance: dispersion of the values

Three main distribution (regression)

- Gaussian (normal): linear regression
- Binomial: logistic regresion
- Poisson: poisson regresion

Other Probability Distributions: Special Cases

- Gaussian Distribution:

- The normal distribution or Gaussian distribution is a continuous probability distribution
- Describes data that clusters around a mean or average.
- The graph of the associated probability density function is bell-shaped, with a peak at the mean
- It is known as the Gaussian function or bell curve.
- The normal distribution can be used to describe, at least approximately, any variable that tends to cluster around the mean.

Other Probability Distributions: Special Cases

- Binomial Distribution:

- The binomial distribution is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments
- Each of these success have probability p.
- Such a success/failure experiment is also called a Bernoulli experiment or Bernoulli trial.
- In fact, when $\mathrm{n}=1$, the binomial distribution is a Bernoulli

Nintrihirtinn
density.default(X = datsliteracy2)

Other Probability Distributions: Special Cases

- Poisson Distribution:
- The Poisson distribution' is a discrete probability distribution
- Expresses the probability of a number of events occurring in a fixed period of time
- The Poisson distribution can also be used for the number of events in other specified intervals such as distance, area or volume.
- It is an approximation to the binomial distribution for the special case when the average number of successes is very much smaller than the possible number
- The possible values are higher than 0
- The mean (λ) and the variance (λ) are the same

Variables vs Distributions

Type of Variable

Distribution
Qualitative
Dichotomous
Binomial

Quantitative Continuous
Gaussian

Quantitative
Discrete
Poisson

