

Objectives

- By the end of this session you should: • know the key uses of mathematical modelling of infectious diseases
 - · be able to set up a simple model using "difference equations"

1. Any simplification of a complex phenomenon (ECCD manual)

2. Any representation of a designed or actual object (Oxford English dictionary)

3. A stylized representation or a generalized description used in analysing or explaining something (Mangel and Hilbourne)

Types of epidemiological models

- 2. Physical or mechanical models, eg Reed-Frost teaching model
- 3. Mathematical models consisting of equations such as

$$\frac{dS}{dt} = -\beta S(t)I(t)$$
$$\frac{dI}{dt} = \beta S(t)I(t) - rI(t)$$
$$\frac{dR}{dt} = rI(t)$$

When might we need models?

Answer:

When we need to address guestions which are difficult to answer using traditional epidemiological studies...

Considerations for planning interventions during a future pandemic

- Several months may elapse between the emergence of a virus which is transmissible to humans and the development of a vaccine
- Influenza pandemics sometimes occur in several waves and the quality of the vaccine available for the first wave may be poor
- \bullet There are limited supplies of antivirals e.g. for <25% of the population
- The age group most likely to be affected is unknown
- Treatment must be taken as soon as possible after onset, for maximum effectiveness

- If a vaccine becomes available, how should it be distributed e.g. Should children get it first?
- Should individuals be vaccinated with the poor quality vaccine before the first wave or wait until a high quality vaccine is available for the second wave
- Would travel restrictions have any impact on the spread of influenza?
- · Will shutting schools have an impact?
- What will happen if antivirals run out?

How are models used?

1.Determining the impact of control strategies

2.Predicting the future numbers of cases

3. Elucidating the natural history or epidemiology of the infection

Added benefit – models can help to identify areas which require further study

1. Use of modelling to determine the impact of control strategies

• Centres around the theme of **thresholds**: to control transmission, we just need to reduce the numbers of cases to a sufficiently low ("threshold") level.

• First applied by Ross (1908): to control malaria, it was sufficient to reduce the density of mosquitoes in a population to a sufficiently low level

- Developed further by
 Kermack and McKendrick (1927)
 - Macdonald (1950/2) defined the "basic reproduction rate" (\rightarrow "number" or "ratio") or "Z₀" > 1 for malaria to persist \rightarrow Garki project \rightarrow herd immunity thresholds

Basic reproduction number (R₀): the average number of secondary infectious cases resulting from each infectious case following his/her introduction into a totally susceptible population.

Net reproduction number (R_n) : the average number of secondary infectious cases resulting from each infectious case in a given population (ie in which some individuals may already be immune).

Herd immunity threshold: the proportion of the population that needs to be immune to control transmission.

Herd Immunity: the proportion of the population that is immune to infection and/or the indirect protection resulting from the presence of immune individuals in the population.

The relationship between R_n and the herd immunity threshold (revision)

Assuming random mixing, $R_n = R_0 \times proportion susceptible (s)$

At the herd immunity threshold, $R_n = 1$,

and so $R_n = R_0 \times s = 1$ so proportion susceptible (s) at the herd immunity threshold is 1/ R_0

Proportion immune (1-s) when $R_n = 1$ i.e. at the herd immunity threshold is therefore given by 1- $1/R_n$

Infectious disease	Herd immunity threshold (%)
Malaria	99
Measles	90-95
Whooping cough	90-95
Chickenpox	85-90
Mumps	85-90
Rubella	82-87
Poliomyelitis	82-87
Diphtheria	82-87
Scarlet fever	82-87
Smallpox	70-80

Other vaccine policy related questions

- For how long do you need to vaccinate in order to control transmission?
- Is mass vaccination at periodic intervals more effective at reducing transmission than vaccinating a fixed proportion of individuals each year?
- If no cases have been observed eg for 1 year, what is the probability that control has been achieved?
- What might be the impact of catch-up campaigns e.g. among teenagers?
- These questions have been explored in relation to rubella, measles, polio, meningococcal disease etc...

The introduction of vaccination

- => \downarrow prevalence of infectious individuals
- => \downarrow risk of infection
- => ↑ proportion who are still susceptible by childbearing age
- => \uparrow burden of CRS.

Answer - possibly China, but we need a model to investigate the possibilities!

Types of models

Stochastic

- incorporate chance variation
- provide the probability of a given outcome or range in which the outcome is likely to occur eg
 - probability that transmission ceases
 - 95% certain that 10-15 cases will be seen

Deterministic models

- describe what will happen on average in a population
 individuals are subdivided into categories
- ("compartments")
- · describe transitions between compartments

In conclusion

Modelling may:

- provide helpful insights into questions whose answers are not immediately obvious
- · help define optimal control strategies for infections
- · identify factors for which more information is required
- help elucidate patterns in the occurrence of infection and disease

