

Objectives

By the end of this session you should:

- know the key uses of mathematical modelling of infectious diseases
- be able to set up a simple model using "difference equations"

What is a model?

1. Any simplification of a complex phenomenon (ECCD manual)
2. Any representation of a designed or actual object (Oxford English dictionary)
3. A stylized representation or a generalized description used in analysing or explaining something (Mangel and Hilbourne)

Types of epidemiological models

1. Animal models

2. Physical or mechanical models, eg Reed-Frost teaching model
3. Mathematical models consisting of equations such as

$$
\begin{aligned}
& \frac{d S}{d t}=-\beta S(t) l(t) \\
& \frac{d I}{d t}=\beta S(t)(t)-r l(t) \\
& \frac{d R}{d t}=r l(t)
\end{aligned}
$$

When might we need models?

Answer:
When we need to address questions which are difficult to answer using traditional epidemiological studies...

Newspaper clippings from 1918...

Images from 1918...

National Museum of Health and Medicine, AFIP
Emergency hospital during 1918 influenza epidemic, Camp Funston, Kansas

Considerations for planning interventions during a future pandemic

- Several months may elapse between the emergence of a virus which is transmissible to humans and the development of a vaccine
- Influenza pandemics sometimes occur in several waves and the quality of the vaccine available for the first wave may be poor
- There are limited supplies of antivirals e.g. for $<25 \%$ of the population
- The age group most likely to be affected is unknown
- Treatment must be taken as soon as possible after onset, for maximum effectiveness

> Control strategies against pandemic influenza - key questions

- If a vaccine becomes available, how should it be distributed e.g. Should children get it first?
- Should individuals be vaccinated with the poor quality vaccine before the first wave or wait until a high quality vaccine is available for the second wave
- Would travel restrictions have any impact on the spread of influenza?
- Will shutting schools have an impact?
- What will happen if antivirals run out?

Model predictions of the effect of travel restrictions on delaying an influenza pandemic (Cooper et al (2006))

Travel restrictions are made after: 1000 cases in city of origin (Hong Kong) ; 1 case in each other city

How are models used?

1.Determining the impact of control strategies
2.Predicting the future numbers of cases
3.Elucidating the natural history or epidemiology of the infection

Added benefit - models can help to identify areas which require further study

Mitigation strategies for pandemic influenza in the United States

Kit

Strategies for containing an emerging
influenza pandemic in Southeast Asia

Potential Impact of Antiviral Drug
Use during Influenza Pandemic

Containing Pandemic Influenza
ning Pandemic Influenza Delaying the International Spread
at the Source wemener, the Source

1. Use of modelling to determine the impact of control strategies

- Centres around the theme of thresholds: to control transmission, we just need to reduce the numbers of cases to a sufficiently low ("threshold") level.
- First applied by Ross (1908): to control malaria, it was sufficient to reduce the density of mosquitoes in a population to a sufficiently low level
- Developed further by
- Kermack and McKendrick (1927)
- Macdonald (1950/2) - defined the "basic reproduction rate"
$\left(\rightarrow\right.$ "number" or "ratio") or " Z_{0} " >1 for malaria to persist \rightarrow Garki project \rightarrow herd immunity thresholds

Revision of basic and net reproduction numbers etc

Basic reproduction number $\left(R_{0}\right)$: the average number of secondary infectious cases resulting from each infectious case following his/her introduction into a totally susceptible population.

Net reproduction number $\left(\mathbf{R}_{\mathrm{n}}\right)$: the average number of secondary infectious cases resulting from each infectious case in a given population (ie in which some individuals may already be immune).

Herd immunity threshold: the proportion of the population that needs to be immune to control transmission.

Herd Immunity: the proportion of the population that is immune to infection and/or the indirect protection resulting from the presence of immune individuals in the population.

What is the R_{0} in this population?

What proportion of the population would need to be immune to control transmission?

The relationship between R_{n} and trends in disease incidence (revision)

The size of the R_{n} usually correlates with the trend in the disease incidence

Each case leads to >1 infectious case $=>$ disease incidence \uparrow
Each case leads to <1 infectious case => disease incidence \downarrow
Each case leads to 1 infectious case => disease incidence remains stable

Herd immunity threshold $=\%$ of the population that needs to be immune for the disease incidence to remain stable (i.e. $\mathrm{R}_{\mathrm{n}}=1$)

What will be the trend in disease incidence in these populations?

The relationship between R_{n} and the herd immunity threshold (revision)

Assuming random mixing,

$$
R_{n}=R_{0} \times \text { proportion susceptible }(s)
$$

At the herd immunity threshold, $\mathrm{R}_{\mathrm{n}}=1$,
and so $\quad R_{n}=R_{0} \times s=1$
so proportion susceptible (s) at the herd immunity threshold is $1 / R_{0}$

Proportion immune (1-s) when $R_{n}=1$ i.e. at the herd immunity threshold is therefore given by

$$
1-1 / R_{0}
$$

The relationship between R_{0} and the herd immunity threshold (revision)

Summary of the herd immunity threshold for different diseases

Infectious disease	Herd immunity threshold (\%)
Malaria	99
Measles	$90-95$
Whooping cough	$90-95$
Chickenpox	$85-90$
Mumps	$85-90$
Rubella	$82-87$
Poliomyelitis	$82-87$
Diphtheria	$82-87$
Scarlet fever	$82-87$
Smallpox	$70-80$

Designing optimal vaccination (or other control) programmes - use of modelling

Example: rubella and CRS (Congenital Rubella Syndrome)
Infection with rubella during pregnancy may result in the child being born with Congenital Rubella Syndrome (CRS)

In settings with a high rubella infection incidence, the burden of CRS is very low: few women are first infected when pregnant since they were infected and became immune in childhood.

Comparison between the proportion seropositive to rubella antibodies in China and the UK (Wannian (1985), Farrington (1990))

Question: In which population should you be more cautious about introducing infant MMR or rubella vaccination?

Considerations:

The introduction of vaccination

$$
\begin{aligned}
& =>\downarrow \text { prevalence of infectious individuals } \\
& =>\downarrow \text { risk of infection } \\
& =>\uparrow \text { proportion who are still susceptible by child- } \\
& \quad \text { bearing age } \\
& =>\uparrow \text { burden of CRS. }
\end{aligned}
$$

Answer - possibly China, but we need a model to investigate the possibilities!

Notifications of Rubella in Greece

Rubella and CRS in Greece, 1993

Stochastic Types of models

- incorporate chance variation
- provide the probability of a given outcome or range in which the outcome is likely to occur eg
- probability that transmission ceases
- 95% certain that $10-15$ cases will be seen

Deterministic models

- describe what will happen on average in a population
- individuals are subdivided into categories
("compartments")
- describe transitions between compartments

Number susceptible at time $\mathbf{t + 1}=$
Number susceptible at time t

- Number newly infected between t and $t+1$

Probability that 2 specific individuals come into effective contact between t and $t+1$ (" β ") \times

Number susceptible at time $\mathrm{t} \times$ Number infectious at time t

$$
\text { So } \quad S_{t+1}=S_{t}-\beta S_{t} I_{t}
$$

Predictions of the numbers of susceptible, infectious and immune individuals derived using the simple model for measles

In conclusion

Modelling may:

- provide helpful insights into questions whose answers are not immediately obvious
- help define optimal control strategies for infections
- identify factors for which more information is required
- help elucidate patterns in the occurrence of infection and disease

