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Objectives

By the end of this session you should:
• know the key uses of mathematical modelling 

of infectious diseases

• be able to set up a simple model using 
“difference equations”

What is a model?

1. Any simplification of a complex phenomenon  
(ECCD manual)

2. Any representation of a designed or actual object 
(Oxford English dictionary)

3. A stylized representation or a generalized 
description used in analysing or explaining 
something (Mangel and Hilbourne)

Types of epidemiological models

1. Animal models

2. Physical or mechanical models, eg Reed-Frost 
teaching model

3. Mathematical models consisting of equations such as
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When might we need models? 

Answer:
When we need to address questions which are 
difficult to answer using traditional epidemiological 
studies…



Example: Pandemic influenza Newspaper clippings from 1918…

Images from 1918… Streetcar in Seattle
Policemen in Seattle, 
December 1918

www.archives.gov/exhibits.influenza-epidemic/records-list.html and 
Seattle Museum of History and Medicine 

Images from 1918…

National Museum of Health and Medicine, AFIP
Emergency hospital during 1918 influenza epidemic, Camp Funston, Kansas

Considerations for planning interventions during a 
future pandemic

• Several months may elapse between the emergence of a 
virus which is transmissible to humans and the 
development of a vaccine

• Influenza pandemics sometimes occur in several waves 
and the quality of the vaccine available for the first wave 
may be poor

• There are limited supplies of antivirals e.g. for <25% of 
the population

• The age group most likely to be affected is unknown

• Treatment must be taken as soon as possible after onset, 
for maximum effectiveness
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Control strategies against pandemic influenza – key 
questions

• If  a vaccine becomes available, how should it be 
distributed e.g. Should children get it first? 

• Should individuals be vaccinated with the poor quality 
vaccine before the first wave or wait until a high quality 
vaccine is available for the second wave

• Would travel restrictions have any impact on the spread of 
influenza?

• Will shutting schools have an impact?

• What will happen if antivirals run out?

Model predictions of the effect of travel restrictions on 
delaying an influenza pandemic (Cooper et al (2006))

Number of cities 
having 

experienced an 
epidemic

Model predictions of the effect of travel restrictions on 
delaying an influenza pandemic (Cooper et al (2006))
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Travel restrictions are made after: 1000 cases in city of origin (Hong Kong) ; 1 case in each other city.

How are models used? 

1.Determining the impact of control strategies

2.Predicting the future numbers of cases

3.Elucidating the natural history or epidemiology of 
the infection

Added benefit – models can help to identify areas 
which require further study

1. Use of modelling to determine the impact of 
control strategies

• Centres around the theme of thresholds: to control 
transmission, we just need to reduce the numbers of cases to a 
sufficiently low (“threshold”) level.  

• First applied by Ross (1908): to control malaria, it was 
sufficient to reduce the density of mosquitoes in a population to 
a sufficiently low level

• Developed further by 
• Kermack and McKendrick (1927) 

• Macdonald (1950/2) - defined the “basic reproduction rate”
(→ “number” or “ratio”) or “Z0” > 1 for malaria to persist  →
Garki project  → herd immunity thresholds



Revision of basic and net reproduction 
numbers etc

Basic reproduction number (R0): the average number of 
secondary infectious cases resulting from each infectious case 
following his/her introduction into a totally susceptible population.  

Net reproduction number (Rn): the average number of 
secondary infectious cases resulting from each infectious case in 
a given population (ie in which some individuals may already be 
immune).  

Herd immunity threshold: the proportion of the population that 
needs to be immune to control transmission. 

Herd Immunity: the proportion of the population that is immune to 
infection and/or the indirect protection resulting from the presence 
of immune individuals in the population.

What is the R0 in this population? 

What proportion of the population would need to be 
immune to control transmission? 

What is the net reproduction number in this population? 

esusceptiblproportionRRn ×= 0

What will be the trend in disease incidence in these 
populations? 

The relationship between Rn and trends in disease 
incidence (revision)

The size of the Rn usually correlates with the trend in the disease 
incidence

Each case leads to >1 infectious case => disease incidence ↑

Each case leads to <1 infectious case => disease incidence ↓

Each case leads to 1 infectious case => disease incidence remains 
stable 

Herd immunity threshold = % of the population that needs to be 
immune for the disease incidence to remain stable (i.e. Rn=1)

The relationship between Rn and the herd immunity 
threshold (revision)

Assuming random mixing,
Rn = R0 × proportion susceptible (s)

At the herd immunity threshold, Rn =1,  

and so Rn = R0 × s = 1

Proportion immune (1-s) when Rn =1 i.e. at the herd 
immunity threshold is therefore given by

1- 1/R0

so proportion susceptible (s) at the herd immunity 
threshold  is 1/ R0



The relationship between R0 and the herd immunity 
threshold (revision)
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Infectious disease Herd immunity
threshold (%)

Malaria 99
Measles 90-95

Whooping cough 90-95
Chickenpox 85-90

Mumps 85-90
Rubella 82-87

Poliomyelitis 82-87
Diphtheria 82-87

Scarlet fever 82-87
Smallpox 70-80

Summary of the herd immunity threshold for 
different diseases

Population A Population B

children adults children adults

In which population is it easier to reduce transmission in the 
overall population by vaccinating children?

Other vaccine policy related questions

• For how long do you need to vaccinate in order to control 
transmission?

• Is mass vaccination at periodic intervals more effective at reducing 
transmission than vaccinating a fixed proportion of individuals each 
year?

• If no cases have been observed eg for 1 year, what is the probability 
that control has been achieved? 

• What might be the impact of catch-up campaigns e.g. among 
teenagers?

These questions have been explored in relation to rubella, measles, 
polio, meningococcal disease etc...

Designing optimal vaccination (or other 
control) programmes - use of modelling

Example: rubella and CRS (Congenital Rubella Syndrome)

Infection with rubella during pregnancy may result in the child 
being born with Congenital Rubella Syndrome (CRS) 

In settings with a high rubella infection incidence, the burden of 
CRS is very low: few women are first infected when pregnant 
since they were infected and became immune in childhood.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

UK
China

Pr
op

or
tio

n 
po

si
tiv

e

Age (yrs)
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antibodies in China and the UK (Wannian (1985), Farrington (1990))

Question: In which population should you be more cautious 
about introducing infant MMR or rubella vaccination?



Considerations:

The introduction of vaccination

=> ↓ prevalence of infectious individuals

=> ↓risk of infection

=> ↑ proportion who are still susceptible by child-
bearing age

=> ↑ burden of CRS.

Answer - possibly China, but we need a model to 
investigate the possibilities! Vaccination coverage

Anderson and May (1991)

Notifications of Rubella in Greece
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Proportion of pregnant women susceptible to rubella
Athens, 1975-91
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Rubella and CRS in Greece, 1993

0

500

1000

1500

2000

2500

3000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

R
ub

el
la

 N
ot

ifi
ca

tio
ns

0

1

2

3

4

5

6

7

8

C
R

S 
ca

se
s

CRS cases
Rubella notifications



Types of models
Stochastic
• incorporate chance variation
• provide the probability of a given outcome or range in 

which the outcome is likely to occur  eg
- probability that transmission ceases
- 95% certain that 10-15 cases will be seen

Deterministic models
• describe what will happen on average in a population
• individuals are subdivided into categories 

(“compartments”)
• describe transitions between compartments
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Predictions of the numbers of susceptible, infectious and 
immune individuals derived using the simple model for measles

0

25000

50000

75000

100000

0 25 50 75 100
Time (days)

0

2000

4000

6000

8000

N
o.

 o
f s

us
ce

pt
ib

le
s

an
d 

im
m

un
es

N
o.

 o
f c

as
es

Susceptible Immune

Cases

0

25000

50000

75000

100000

0 10 20 30 40 50
Time (years)

0

2000

4000

6000

8000

Predictions of the numbers of susceptible, infectious and immune
individuals derived using the simple model for measles
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In conclusion
Modelling may:

• provide helpful insights into questions whose answers 
are not immediately obvious

• help define optimal control strategies for infections

• identify factors for which more information is required

• help elucidate patterns in the occurrence of infection 
and disease
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To be continued in the computer practical…


