

Cholera total cases and attack rates per borough, Beira city, 2/3/98

BOROUGH	ATTACK RATE	CASES
Highest attack rates		
Munhava Central	4.42 %	1406
Mananga	4.01 %	776
Mungassa	3.74 %	146
Vaz	3.20 %	195
Lowest attack rates (boroughs with 0 case	es excluded)
Inhamizua	0.40 %	60
Nhangau	0.41 %	13
Matadouro	0.54 %	61
Mascarenha	0.66 %	139
Muavo	1.05 %	69

Measles outbreak in Germany

How many of the following cases are secondary cases of the first one?

Periods: from infection to rash 14 to 21 days

Infective one week before to 4 days after rash

Cases by age and day of onset of rash

Family 1 Family 2

1	2	3	4	5	6	7	8	9	10	11	12	13
						7			8		9	
12					7				10			

^{* 7} years old cases are classmates at the school, there is no other contact between the cases of both families

Introduction to infectious disease epidemiology

Infectious disease

Infectious agent or its toxins

Transmission
 Infected
 Person

Susceptible

Animal

Reservoir

Epidemic risk

Specific issues

A case can be an exposure
 Cases at T0 determine cases at T1
 (together with other factors)

Infection ⇒ Immunity (not always)
 Partial or complete
 Temporal o permanent

Immunity

95% population immune ¿two scenarios?

Exposure and disease

Exposure to agent ⇒ risk of infection
 Exposure ⇒ Infection

Infection \implies Disease

Unknown exposures
 Asymptomatic carriers
 Incubation period

Generation time

Exposure and transmission

Susceptible	Incubation	Symptoms	
	Latency	Infectivity	

Generation time / Serial interval

Relates cases with a potential infection source

Helps identifying index cases or sources

Measles outbreak in Germany

How many of the following cases are secondary cases of the first one?

Periods: from infection to rash 14 to 21 days

Infective one week before to 4 days after rash

Cases by age and day of onset of rash

Family 1 Family 2

1	2	3	4	5	6	7	8	9	10	11	12	13
						7			8		9	
12					7				10			

^{* 7} years old cases are classmates at the school, there is no other contact between the cases of both families

Source / mode of transmission

Communicable disease ⇒ epidemic risk

- Epidemic dynamics
 - Infection source and mode of transmission
 - Incubation period
 - Transmissibility
 - Social factors
 - Immunity

Hypothesis type of outbreak

Confirm maximum and minimum IP

- Identify probable moment and duration of exposure
- Identify IP of unknown agents if the moment of exposure is known

Point source

Distribution of the incubation period

Extended source

Serial / progressive source, person to person

Transmissibility

- Direct (person to person)
 or
- Indirect (multiple means)

- Biological factors and
- Social factors

Transmissibility

- Secondary attack rate
 - % cases among contact of 1 index case

 Depends on social interaction and the age
 of cases (inverse)
- Reproduction number (R₀ and R)

Average of secondary cases

Transmissibility

Contact pattern and intensity

Proportion of immunes

Utility of R₀

- R₀ > 1 epidemic disease
- $R_0 = 1$ endemic disease
- R₀ < 1 elimination of disease

Herd immunity threshold

$$\frac{R_0-1}{R_0}=1-\frac{1}{R_0}$$

Problem: Super-spreaders

Indirect transmission

Malaria

Average of infective bits per day after introduction of a case

 R_0 = vectorial capacity * duration of infection

Concepts

- Case = exposure
- Immunity
- Latency period / asymptomatics
- Transmissibility (secondary attack)
- Contact patterns
- Epidemic threshold
- % 2° cases infected before control of index case